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Abstract

The locked s-cis enone system present in 3-methylenequinol-4-ones and chroman-4-ones o�ers sub-
stantial further synthetic opportunities as illustrated by the ability to function as a 2p-component in 1,3-
dipolar cycloaddition reactions, or as a 2p- or 4p-component in Diels±Alder reactions. Cascade molecular
queuing-cycloadditions/cyclocondensations are reported. # 2000 Elsevier Science Ltd. All rights reserved.
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In the preceding paper1 we discussed the synthesis of 3-methylenequinol-4-ones and chroman-
4-ones via palladium-catalysed termolecular queuing processes and the potential of the locked s-
cis enone system in these quinolones and chromanones for accessing g-aminoalcohols via Michael
additions and subsequent stereoselective reductions. The conformationally locked s-cis enone
system can also function as 2p-component in 1,3-dipolar cycloadditions, or as a 2p- or 4p-com-
ponent in Diels±Alder reactions.
Spiro-fused 6/5-heterocycles were created via 1,3-dipolar cycloaddition reactions. The azo-

methine ylide cycloaddition makes use of our recently developed Ag2O/base2 catalytic system.
Cycloadditions of (1)3 with 3-methylenechroman-4-ones or quinol-4-ones (2) proceeded stereo-
and regiospeci®cally in toluene at room temperature to a�ord syn±endo4 cycloadducts (3a±e) in
good yields (Scheme 1). The stereochemistry of (3a±e) is based on the usual facial selectivity and
endo-transition state observed for metallo-azomethine ylide cycloadditions.4
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A range of aldonitrones5 underwent cycloadditions to 3-methylenechroman-4-one (2, X=O,
R1=R2=Me) in boiling THF with excellent regioselectivity and a high degree of diastereo-
selectivity6 (Scheme 2). exo-Isoxazolidines (4a±e) were obtained in good yield together with traces
of endo-isomers.

Cascade reactions incorporating both palladium-catalysed termolecular queuing processes1 and
1,3-dipolar cycloaddition reactions were designed and their synthetic viability explored (Scheme 3).
One-pot chromanone synthesis±azomethine ylide cycloaddition was performed using o-iodophenol,
CO, allene and imine (1, Ar=Ph). Reaction occurred at 45�C in toluene in the presence of
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Pd(PPh3)4 and K2CO3, Ag2O and DBU to give a 1:1 mixture of exo- and endo-cycloadducts4 (5)
and (6) in 60% combined yield. The nitrone (7a) upon stirring in toluene at 75�C in the presence
of Pd(PPh3)4 and K2CO3, o-iodophenol, CO and dimethylallene reacted to a�ord a 6:1
diastereomeric mixture6 of isoxazolidines (8a) and (9a) in 78% combined yield, whilst an analogous
cascade employing nitrone (7b) resulted in isoxazolidine (8b) in 83% yield as a single isomer.6

1,3-Dipolar cycloadditions of aryl nitrile oxides (generated in situ from aryl chlorooximes7 in
the presence of NEt3) with chromanones proceeded in good yield in a regiospeci®c manner to
a�ord isoxazolines (10a±f)8 (Scheme 4). These results are in accordance with the majority of
literature cases involving 1,1-disubstituted ole®ns, in which the oxygen of the nitrile oxide
becomes attached to the more sterically hindered end of the double bond.9

The conformationally locked s-cis enone functionality present in 3-methylenechroman-4-ones
has the potential to act as either a 4p- or 2p-component in Diels±Alder reactions. Thus, hetero
Diels±Alder reactions of ethyl vinyl ether with chromanones (11a) and (11b) (4p-component) in
the presence of 7 mol% hydroquinone and 10 mol% zinc chloride proceeded at room temperature
to furnish dihydropyran derivatives (12a) and (12b) in 55 and 77% yields, respectively (Scheme 5).

Heating chromanone (11b) (2p-component) with isobenzofuran in boiling CH2Cl2 a�orded
Diels±Alder adduct (13) in 51% yield whilst reaction of chromanone (14) (2p-component) with
Danishefsky's diene in boiling toluene, followed by acid work-up (2 M HCl), a�orded a mixture
of (15) (63%) and (16) (17%) (Scheme 6).
Finally, we have brie¯y explored cascade termolecular queuing±cyclocondensation processes

employing o-iodophenol, CO, dimethylallene and arylhydrazines (Scheme 7). In these processes it
is clear that the desired cascade process is not signi®cantly impeded by potentially competing
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processes such as catalytic dehydrogenation of the arylhydrazines to palladium hydrides and
aryldiazo compounds.
The foregoing summary illustrates the rich chemistry available by the combination of palla-

dium-catalysed cascade processes with cycloaddition reactions. Such combinations have been
used to furnish a range of structurally diverse pyrrolidine, isoxazolidine, isoxazoline, dihy-
dropyran and pyrazoline derivatives.
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